ANNEXURES

	Consultants/ in – house Reports cited in the Audit Report									
Sl. No.	Name of the consultant	Year	Category							
1	RGL report on Water quality monitoring parameters (February 1984)	1984	In-house							
2	Bombay High review committee by Das Gupta	1990	In-house committee							
3	Caproco International Ltd. Report on Corrosion problem and recommendation remedial measures	1998	International							
4	Mumbai High and Neelam Heera Water Injection projects by Ganesh Thakur (2007)	2007	International							
5	Evaluation of the Mumbai High field by William Cobb & Associates	2009	International							
6	Project memorandum of M/s. GCA regarding Achieving 40% recovery in Mumbai High field	2009	International							
7	IRS report on Injection Water quality and injectivity assessment of Injectors of Mumbai High	2011	In-house institute							
8	Failure analysis of Water Injection pipeline by Institute of Engineering and Ocean Technology	2012	In-house institute							
9	Report on facility cost optimisation and Water Injection improvements in Mumbai High	2012	In-house committee							
10	Peer review of the Field Development Plan for Mumbai High South Ph-III by M/s. Bayphase	2014	International							
11	Committee report on Pre-mature failure of water injection pipelines	2014	In-house committee							
12	Review of tubing metallurgy for water injection wells Institute of Oil & Gas Production Technology	2016	In-house institute							
13	Task force committee report on Augmentation and Redistribution of Water Injection in Mumbai High	2018	In-house committee							
14	Performance analysis of recently side-tracked wells Institute of Oil and Gas Production Technology (IOGPT)	2018	In-house institute							
15	ONGC Energy Strategy -2040 by The Boston Consultancy Group	2018	International							
16	ONGC offshore five fields peer review by Gaffney, Cline & Associates (Mumbai High)	2019	International							
17	ONGC offshore five fields peer review by Gaffney, Cline & Associates (Heera)	2019	International							
18	ONGC offshore five fields peer review by Beicep Franlab (Neelam)	2019	International							

Annexure-I (as referred to in Para 2.2) Consultants/ in – house Reports cited in the Audit Report

	Plan v/s Actual Water Injection in Mumbai High, Neelam and Heera fields											
Year	Mumbai High South						Mum	bai High N	orth			
	Requirem ent as per redevelop ment plan-bwpd	Water injection build-up plan- bwpd	Actual water injection -bwpd	Shortfall actual WI- w.r.t. redevelopm ent plan (%)	Shortf all in WI- w.r.t. build- up plan (%)	Requireme nt as per redevelop ment plan- bwpd	Water injectio n build- up plan –bwpd	Actual water injection -bwpd	Shortfall Actual WI-w.r.t. redevelo pment plan (%)	Shortfall Actual WI-w.r.t. build-up plan (%)		
2014-15	623728	604000	534689	14.28	11.48	489843	456900	394383	19.49	13.68		
2015-16	782253	652300	582880	25.49	10.64	542895	427800	367240	32.36	14.16		
2016-17	786461	621900	613800	21.95	1.30	562031	375700	376700	32.98	-0.27		
2017-18	784145	622300	519200	33.79	16.57	559416	382360	403000	27.96	-5.40		
2018-19	793774	577300	470402	40.44	18.10	548022	407300	389755	29.31	4.89		
			Average	27.19	11.62				28.42	5.41		
Year			Heera			Neelam						
	Requireme nt as per redevelopm ent plan- bwpd	Water injection build-up plan- bwpd	Actual water injection bwpd	- Shortfall Actual WI- w.r.t. redevelo pment plan (%)	Shortf all in WI- w.r.t. build- up plan (%)	Requireme nt as per redevelop ment plan- bwpd	Water injection build-up plan – bwpd	Actual water injection- bwpd	Shortfall Actual WI- w.r.t. redevelo pment plan (%)	Shortf all actual WI- w.r.t. build- up plan (%)		
2014-15	202099	128550	119667	40.79	6.91	98225	61811	58319	40.63	3 5.65		
2015-16	205459	89542	86657	57.82	3.22	74625	62508	58288	21.89	6.75		
2016-17	209234	142292	108872	47.97	23.49	88130	96963	65344	25.85	32.61		
2017-18	174848	165500	121876	30.30	26.36	120813	79800	63439	47.49	20.50		
2018-19	184393	172125	115462	37.38	32.92	142366	113808	68046	52.20	40.21		
			Average	e 42.85	18.58				37.61	21.14		
Bwpd - Ba	arrel of water	per day										

Annexure-II (as referred to in Para 3.3)

	2014-15									
SI.	Particulars	ŀ	Planned	ed Actual				Shortfall		
No.		MHN	MHS	MH	MHN	MHS	MH	-MH		
1	New water injector drilling strings	2	0	2	0	0	0	2		
2	Workover jobs (WOJ)//Side track	14	5	19	4	3	7	12		
	(ST) in existing water injectors strings			10		6	11			
3	Rig less water injector conversion strings	6		13	5	6	11	2		
4	Resumption of water injection strings	7	33	40	5	28	33	7		
5	Stimulation strings	10	24	34	9	11	20	14		
	1					2015-16	5			
SI.	Particulars	F	Planned			Actual		Shortfall-		
No.		MHN	MHS	MH	MHN	MHS	MH	MH		
1	New water injector drilling strings	2	0	2	0	0	0	2		
2	Rig less water injector conversion strings	3	3	6	0	0	0	6		
3	Choke size increase strings	1	0	1	1	0	1	0		
4	WOJ/ST in existing water injectors	30	30	60	7	8	15	45		
5	MIP for additional injection	1	3	4	0	2	2	2		
6	Resumption of water injection strings	9	0	9	3	1	4	5		
7	Stimulation	16	34	50	12	23	35	15		
8	Strings for PFA replacement	0	9	9	0	4	4	5		
	2016-17									
		1								
SI.	Particulars]	Planned			Actual		Shortfall-		
Sl. No.	Particulars	MHN	Planned MHS	MH	MHN	Actual MHS	MH	Shortfall- MH		
Sl. No. 1	Particulars New water injector drilling	MHN 2	Planned MHS 0	MH 2	MHN 0	Actual MHS 0	MH 0	Shortfall- MH 2		
Sl. No. 1 2	Particulars New water injector drilling Rig less water injector conversion	MHN 2 0	Planned MHS 0 2	MH 2 2	MHN 0 0	Actual MHS 0 0	MH 0	Shortfall- MH 2 2		
Sl. No. 1 2 3	Particulars New water injector drilling Rig less water injector conversion WI conversion after Work over/ side track	MHN 2 0 2	Planned MHS 0 2 0	MH 2 2 2	MHN 0 0 0	Actual MHS 0 0 0	MH 0 0 0	Shortfall- MH 2 2 2		
Sl. No. 1 2 3 4	Particulars New water injector drilling Rig less water injector conversion WI conversion after Work over/ side track WOJ/ST in existing water injectors	MHN 2 0 2 3	Planned MHS 0 2 0 6	MH 2 2 2 2 9	MHN 0 0 0 2	Actual MHS 0 0 0 1	MH 0 0 0 3	Shortfall- MH 2 2 2 2 6		
Sl. No. 1 2 3 4 5	ParticularsNew water injector drillingRig less water injector conversionWI conversion after Work over/ side trackWOJ/ST in existing water injectorsChoke size increase	MHN 2 0 2 3 3	MHS 0 2 0 6 0	MH 2 2 2 3	MHN 0 0 2 2	Actual MHS 0 0 0 0 1 0	MH 0 0 3 2	Shortfall- MH 2 2 2 2 6 1		
Sl. No. 1 2 3 4 5 6	ParticularsNew water injector drillingRig less water injector conversionWI conversion after Work over/ side trackWOJ/ST in existing water injectorsChoke size increaseResumption of water injection	MHN 2 0 2 3 3 11	Planned MHS 0 2 0 6 0 8	MH 2 2 2 2 9 3 19	MHN 0 0 2 2 10	Actual MHS 0 0 0 0 1 1 0 8	MH 0 0 3 2 18	Shortfall- MH 2 2 2 1 1		
Sl. No. 1 2 3 4 5 6 7	ParticularsNew water injector drillingRig less water injector conversionWI conversion after Work over/ side trackWOJ/ST in existing water injectorsChoke size increaseResumption of water injectionStimulation	MHN 2 0 2 3 3 11 9	Planned MHS 0 2 0 6 0 8 28	MH 2 2 2 3 19 37	MHN 0 0 2 2 10 6	Actual MHS 0 0 0 0 1 1 0 8 10	MH 0 0 3 2 18 16	Shortfall- MH 2 2 2 1 2		
Sl. No. 1 2 3 4 5 6 7	ParticularsNew water injector drillingRig less water injector conversionWI conversion after Work over/ side trackWOJ/ST in existing water injectorsChoke size increaseResumption of water injectionStimulation	MHN 2 0 2 3 3 11 9	Planned MHS 0 2 0 6 0 8 28	MH 2 2 3 19 37	MHN 0 0 2 2 10 6 2	Actual MHS 0 0 0 1 1 0 8 10 2017-18	MH 0 0 3 2 18 16	Shortfall- MH 2 2 2 1 2		
Sl. No. 1 2 3 4 5 6 7 5 8 1.	Particulars New water injector drilling Rig less water injector conversion WI conversion after Work over/ side track WOJ/ST in existing water injectors Choke size increase Resumption of water injection Stimulation	MHN 2 0 2 3 3 11 9	Planned MHS 0 2 0 6 0 8 28 28	MH 2 2 2 9 3 19 37	MHN 0 0 2 2 10 6	Actual MHS 0 0 0 1 1 0 8 10 8 10 2017-18 Actual	MH 0 0 3 2 18 16	Shortfall- MH 2 2 2 1 2 5 1 21		
Sl. No. 1 2 3 4 5 6 7 Sl. No. No.	Particulars New water injector drilling Rig less water injector conversion WI conversion after Work over/ side track WOJ/ST in existing water injectors Choke size increase Resumption of water injection Stimulation	MHN 2 0 2 3 31 9 MHN	Planned MHS 0 2 0 6 0 8 28 28 Planned MHS	 MH 2 2 9 3 19 37 MH 	MHN 0 0 2 10 6 2 MHN	Actual MHS 0 0 0 1 0 8 10 8 10 2017-18 Actual MHS	 MH 0 0 0 3 2 18 16 MH 	Shortfall- MH 2 2 2 1 21 Shortfall- MH		
Sl. No. 1 2 3 4 5 6 7 5 6 7 5 8 1 No. 1	Particulars New water injector drilling Rig less water injector conversion WI conversion after Work over/ side track WOJ/ST in existing water injectors Choke size increase Resumption of water injection Stimulation Particulars New water injector drilling	MHN 2 0 2 3 31 9 MHN 2	Planned MHS 0 2 0 6 0 8 28 Planned MHS 0	MH 2 2 2 3 19 37	MHN 0 0 0 2 10 6 2 10 3	Actual MHS 0 0 0 0 1 0 8 10 2017-18 Actual MHS 0	MH 0 0 3 2 18 16 MH 3	Shortfall- 2 2 2 2 2 2 2 2 2 2 3 1 2 3 3 4 5 5 6 1 1 3 4 5 6 6 1 1 5 6 6 6 7 6 7 6 6 7 6 7 7 7		
Sl. No. 1 2 3 4 5 6 7 Sl. No. 1 2 2	Particulars New water injector drilling Rig less water injector conversion WI conversion after Work over/ side track WOJ/ST in existing water injectors Choke size increase Resumption of water injection Stimulation Particulars New water injector drilling Rig less water injector conversion	MHN 2 0 2 3 3 11 9 MHN 2 8	Planned MHS 0 2 0 6 0 8 28 28 Planned MHS 0 4	MH 2 2 2 3 19 37 MH 2 12	MHN 0 0 0 0 2 10 6 2 MHN 3 5	Actual MHS 0 0 0 0 1 0 8 10 8 10 2017-18 Actual MHS 0 0	MH 0 0 3 2 18 16 MH 3 5	Shortfall- 2 2 2 2 1 21 Shortfall- MH -1 7		
Sl. No. 1 2 3 4 5 6 7 Sl. No. 1 2 3	Particulars New water injector drilling Rig less water injector conversion WI conversion after Work over/ side track WOJ/ST in existing water injectors Choke size increase Resumption of water injection Stimulation Particulars New water injector drilling Rig less water injector conversion WI conversion after Work over/ side track	MHN 2 0 2 3 3 11 9 MHN 2 8 7	Planned MHS 0 2 0 6 0 8 28 28 Planned MHS 0 4 4	MH 2 2 2 9 3 19 37 MH 2 11	MHN 0 0 0 2 10 6 MHN 3 5 1	Actual MHS 0 0 0 0 0 0 8 10 8 10 2017-18 Actual MHS 0 0 0 0	MH 0 0 3 2 18 16 MH 3 5 1	Shortfall- 2 2 2 2 1 1 21 8hortfall- 1		
Sl. No. 1 2 3 4 5 6 7 5 8l. No. 1 2 3 4	Particulars New water injector drilling Rig less water injector conversion WI conversion after Work over/ side track WOJ/ST in existing water injectors Choke size increase Resumption of water injection Stimulation Particulars New water injector drilling Rig less water injector conversion WI conversion after Work over/ side track WOJ/ST in existing water injectors	MHN 2 0 2 3 3 11 9 MHN 2 8 7 9	Planned MHS 0 2 0 6 0 8 28 28 Planned MHS 0 4 4 4	MH 2 2 2 3 19 37 MH 2 11 20	MHN 0 0 0 2 10 6 MHN 3 5 1 3	Actual MHS 0 0 0 0 0 1 0 8 10 2017-18 Actual MHS 0 0 0 0 0 0 7	MH 0 0 3 2 18 16 MH 3 5 1 10	Shortfall- 2 2 2 2 2 1 21 1 21 5 MH -1 7 10 10		
Sl. No. 1 2 3 4 5 6 7 5 81. No. 1 2 3 4 5 6 7 3 4 5 4 5 5 6 7 5	Particulars New water injector drilling Rig less water injector conversion WI conversion after Work over/ side track WOJ/ST in existing water injectors Choke size increase Resumption of water injection Stimulation Particulars New water injector drilling Rig less water injector conversion WI conversion after Work over/ side track WOJ/ST in existing water injectors Profile modification jobs	MHN 2 0 2 3 3 11 9 MHN 2 8 7 9 3 3	Planned MHS 0 2 0 6 0 8 28 28 28 Planned MHS 0 4 4 4 11	MH 2 2 2 9 3 19 37 MH 2 11 20 3	MHN 0 0 0 0 2 10 6 2 10 3 5 1 3 0 3 0	Actual MHS 0 0 0 0 0 0 8 10 8 10 2017-18 Actual MHS 0 0 0 0 0 0 7 0	MH 0 0 0 0 13 16 MH 3 5 1 10 0	Shortfall- 2 2 2 2 2 1 1 21 Shortfall- MH -1 7 10 3		
Sl. No. 1 2 3 4 5 6 7 5 81. No. 1 2 3 4 5 6 7 5 6 7 1 2 3 4 5 6 6 5	Particulars New water injector drilling Rig less water injector conversion WI conversion after Work over/ side track WOJ/ST in existing water injectors Choke size increase Resumption of water injection Stimulation Particulars New water injector drilling Rig less water injector conversion WI conversion after Work over/ side track WOJ/ST in existing water injectors Profile modification jobs Resumption of water injection	MHN 2 0 2 3 3 11 9 MHN 2 8 7 9 3 2	Planned MHS 0 2 0 6 0 8 28 28 Planned MHS 0 4 4 4 11 0 7	MH 2 2 2 3 9 3 19 37 MH 2 11 20 3 9	MHN 0 0 0 0 2 10 6 MHN 3 5 1 3 0 2	Actual MHS 0 0 0 0 0 1 0 8 10 2017-18 Actual MHS 0 0 0 0 0 7 0 0 7	MH 0 0 0 0 3 2 18 16 MH 3 5 1 10 0 9	Shortfall- 2 2 2 1 1 21 8hortfall- 1		
Sl. No. 1 2 3 4 5 6 7 81. No. 1 2 3 4 5 6 7 3 4 5 6 7 6 7 7	Particulars New water injector drilling Rig less water injector conversion WI conversion after Work over/ side track WOJ/ST in existing water injectors Choke size increase Resumption of water injection Stimulation Particulars New water injector drilling Rig less water injector conversion WI conversion after Work over/ side track WOJ/ST in existing water injectors Profile modification jobs Resumption of water injection Stimulation	MHN 2 0 2 3 31 3 11 9 MHN 2 8 7 9 3 2 8 7 9 3 2 8 7 9 3 2 18	Planned MHS 0 2 0 6 0 8 28 28 Planned MHS 0 4 4 4 4 11 0 7 18	MH 2 2 2 3 19 37 MH 2 11 20 3 9 336	MHN 0 0 0 2 10 6 MHN 3 5 1 3 0 2	Actual MHS 0 0 0 1 0 8 10 8 10 2017-18 Actual MHS 0 0 0 0 7 0 7 0 7 23	MH 0 0 0 10 0 2 18 16	Shortfall- 2 2 2 2 2 1 21 1 21 5hortfall- MH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 0 8		

Annexure III (as referred to in Para 3.4) Plan versus execution of annual plan inputs

Report No. 19 of 2021

Sl.	Particulars]	Planned		Actual			Shortfall-	
No.		MHN	MH	MH	MHN	MHS	MH	MH	
1	New water injector drilling	3	0	3	1	0	1	2	
2	Rig less water injector conversion	4	5	9	3	5	8	1	
3	WI conversion after workover/ side track	6	6	12	0	1	1	11	
4	WOJ/ST in existing water injectors	6	5	11	1	2	3	8	
5	Profile modification jobs	4	0	4	2	0	2	2	
6	Resumption of water injection	9	17	26	10	38	48	-22	
MHN -	Mumbai High North, MHS - Mumbai	High Sou	uth, MH	I - Mun	nbai Hig	h			

Annexure-IV (as referred to in Para 3.6) Mumbai High South

Mumbai High North

VRR - Voidage Replacement Ratio

VRR - Voidage Replacement Ratio

Annexure V
(as referred in Para 4.2)
Major Water Injection equipment

Platform	Major equipment	Installed quantity	Standby philosophy
	installed		
Mumbai South			
Water Injection	Sea Water Lift Pump	3	2R +1SB
South (WIS)	Booster Pump	3	2R+1SB
	Main Injection Pump	5	4R+1SB
	Fine Filter	12	10R+1SB+1BW
	DO Tower	2	2R
	Vacuum Pump	4	2R+2SB
	Chlorinator	2	1R+1SB
Infill Complex	Sea Water Lift Pump	3	2R+1SB
Water Injection	Booster Pump	3	2R+1SB
(ICW)	Main Injection Pump	5	4R+1SB
	Fine Filter	6	4R+1SB+1BW
	DO Tower	2	2R
	Vacuum Pump	4	2R+2SB
	Chlorinator	2	1R+1SB
South High Water	Sea Water Lift Pump	3	2R+1SB
Injection (SHW)	Booster Pump	3	2R+1SB
	Main Injection Pump	5	4R+1SB
	Fine Filter	7	6R+1SB
	DO Tower	2	2R
	Vacuum Pump	4	2R+2SB
	Chlorinator	2	1R+1SB
Mumbai High North			
Mumbai North	Sea Water Lift Pump	3	2R+1SB
Water Injection	Booster Pump	3	2R+1SB
(MNW)	Main Injection Pump	5	4R+1SB
	Fine Filter	5	4R+1SB
	DO Tower	2	1R+1SB
	Vacuum Pump	4	2R+2SB
	Chlorinator	2	1R+1SB
Water Injection	Sea Water Lift Pump	3	2R+1SB
North (WIN)	Booster Pump	3	2R+1SB
	Main Injection Pump	5	4R+1SB
	Fine Filter	8	6R+1SB+1BW

Report No. 19 of 2021

Platform	Major equipment	Installed quantity	Standby philosophy
	installed		
	DO Tower	2	2R
Heera			
Heera Water	Sea Water Lift Pump	3	2R+1SB
Injector	Booster Pump	3	2R+1SB
	Main Injection Pump	5	3R+2SB
	Fine Filter	6	4R+2SB
	DO Tower	1	1R+0SB
	Vacuum Pump	2	1R+1SB
	Chlorinator	1	1R+0SB
Neelam			
Neelam water	Sea Water Lift Pump	3	2R+1SB
Injection (NLW)	Booster Pump	3	2R+1SB
	Main Injection Pump	4	2R+2SB
	Fine Filter	6	4R+2SB
	DO Tower	2	1R+1SB
	Vacuum Pump	4	2R+2SB
	Chlorinator	1	1R+0SB
Note: R-Running, SB-	Standby, BW-Backwash		

Annexure-VI
(as referred to in para 4.4)
Replacement life of water injection equipment

Equipment	Replacement life (whichever is earlier)
Main Injection Pump	20 years or 1,50,000 hours
Sea Water Lift pump	15 years or 1,10,000 hours
Booster Pump	Not furnished to Audit
Chlorinator	15 years
Dosing Pump	10 years
Other small pump	10 years
LT motors (<25 KW)	10 years
LT motors (>25 KW)	15 years
Vacuum pump-DO tower	Condition based**
Vacuum pump motor-DO tower	Condition based**
Fine Filters/coarse filters	Condition based**

** This equipment are not falling into specific provisions of the policy and therefore, its replacement is decided on the basis of specific condition/performance/repair economics.

	Syster	n availa	bility o	f wate	er inject	ion					
Infill Complex Water Injection Platform											
Year	SWLP	BP	MIP	VP	DO	Fine	Coarse	Chlorinators			
					Tower	Filters	Filters				
2014-15	100	99.1	94	100	77.6	88.5	0	22.54			
2015-16	100	99.9	72.3	100	84.3	91.0	0	47.77			
2016-17	98.8	100	82.2	98.1	99.4	94.2	0	46.02			
2017-18	100	100	97.9	100	97	98.0	0	0			
2018-19	100	100	100	98.7	98.5	99.5	0	0			
Mumbai North Water Injection Platform											
Year	SWLP	BP	MIP	VP	DO	Fine	Coarse	Chlorinators			
					Tower	Filters	Filters				
2014-15	100	100	100	100	100	100	0	100			
2015-16	100	100	100	100	100	100	0	100			
2016-17	100	100	100	100	100	100	0	100			
2017-18	100	100	100	100	100	100	0	100			
2018-19	99.8	100	100	100	100	100	0	100			
South High Water	Injection Platform	n									
Year	SWLP	BP	MIP	VP	DO	Fine	Coarse	Chlorinators			
	100	00.0		00.1	Tower	Filters	Filters				
2014-15	100	98.9	98	99.1	100	100	0	0			
2015-16	99.8	100	99.9	83.7	100	100	0	0			
2016-17	99.5	98.7	99.6	98.8	100	100	0	0			
2017-18	98.9	97.4	97.4	74.2	100	100	0	0			
2018-19	87.3	92.9	85.5	75.9	100	93.5	0	0			
Water Injection No	orth Platform	DD	MID	TID	DO	171	a				
Year	SWLP	вр	MIP	VP	DO Towar	Fine	Coarse	Chlorinators			
2014 15	100	100	100	100	100er	100	o	100			
2014-15	100	100	100	100	100	100	0	00 58			
2015-10	100	100	100	87	100	100	0	100			
2010-17	100	100	100	100	100	87.5	0	100			
2017-10	100	100	100	100	100	84.4	0	98.97			
Water Injection So	uth Platform	100	100	100	100	01.1	Ū	90.97			
Year	SWLP	BP	MIP	VP	DO	Fine	Coarse	Chlorinators			
I cui		51			Tower	Filters	Filters	Children			
2014-15	100	98.7	99.5	48.8	100	63.1	0	0			
2015-16	100	99.8	99.9	14.3	100	58.2	0	0			
2016-17	100	91.0	99.1	65.2	99.6	58.2	0	0			
2017-18	100	85.0	100.0	66.1	99.9	62.4	0	0			
2018-19	100	49.3	100.0	50.0	69.7	64.9	0	0			
Water Injection He	era Platform										
Year	SWLP	BP	MIP	VP	DO	Fine	Coarse	Chlorinators			
					Tower	Filters	Filters				
2014-15	100	100	100	100	99.8	100	0	0			

Annexure-VII (as referred to in para 4.5) System availability of water injection

2015-16	100	100	100	100	99.8	100	0	0		
2016-17	100	100	100	100	99.7	100	0	0		
2017-18	100	100	100	100	99.5	100	0	0		
2018-19	100	100	100	100	99.6	100	16	0		
Neelam Water Injection Platform										
Year	SWLP	BP	MIP	VP	DO	Fine	Coarse	Chlorinators		
					Tower	Filters	Filters			
2014-15	99.40	100.00	99.00	99	Tower 100	Filters 100	Filters 0	0		
2014-15 2015-16	99.40 99.89	100.00 100.00	99.00 99.46	99 99	Tower 100 100	Filters 100 100	Filters 0 0	0		
2014-15 2015-16 2016-17	99.40 99.89 100.00	100.00 100.00 100.00	99.00 99.46 100.00	99 99 99	Tower 100 100 100	Filters 100 100 100	Filters 0 0 0	0 0 0		
2014-15 2015-16 2016-17 2017-18	99.40 99.89 100.00 99.30	100.00 100.00 100.00 100.00	99.00 99.46 100.00 86.68	99 99 99 99	Tower 100 100 100 100	Filters 100 100 100 100	Filters 0 0 0 0 0	0 0 0 0		
2014-15 2015-16 2016-17 2017-18 2018-19	99.40 99.89 100.00 99.30 99.60	100.00 100.00 100.00 100.00	99.00 99.46 100.00 86.68 93.76	99 99 99 99 99 99	Tower 100 100 100 100 100 100	Filters 100 100 100 100 100	Filters 0 0 0 0 0 0	0 0 0 0 0 0		

System availability.

SWLP - Sea Water Lift Pump, BP - Booster Pump, MIP - Main Injection Pump, VP - Vacuum Pump, DO Tower - De-oxygenation Tower

Annexure-VIII (as referred to in Para 4.6)

Month/ Year	Running hrs	Standby hrs	Maintenance/ Downtime hrs	Availability (%)	Main Injection Pump (MIP)
May 2014	24	0	720	3.2	6680 at repairs - April 2014 to
July 2014	24	0	720	3.2	March 2014 to
August 2014	24	0	720	3.2	

ng/ dagnatah data in Manthl uta duruin _ • . . 1 .

Running hour (MIP) shown nil but water despatch reported

Month/ Year	Main Injection Pump (MIP)	Running hrs.	Standby Hrs.	Maintenance/ Downtime Hrs.	Availability (%) (monthly)	MIP despatch data reported in the Monthly reports
October	MIP 1	0	742	2	99.7	295732
2015	MIP 2	0	742	2	99.7	
	MIP 3	0	0	744	0.00	
	MIP 4	0	0	744	0.00	

Booster Pump (TAG No. 6620) - running hour depicted same as maintenance/ downtime hour

Month/ Year	Running hrs.	Standby hrs.	Maintenance/ Downtime Hrs.	_Availability (percentage)
December 2016	666	78	666	10.5
January 2017	711	33	711	4.4
February 2017	558	114	558	17.0
March 2017	537	205	539	27.6
April 2017	655	63	657	8.8
May 2017	663	79	665	10.6
June 2017	675	43	677	6.0
July 2017	219	523	221	70.3
August 2017	219	523	221	70.3

Annexure-IX (as referred to in Para 5.3) Average quality of injection water

		MUMBA	I HIGH ASSET	ſ		
		WI	S Platform			
Parameter	Limit	2014-15	2015-16	2016-17	2017-18	2018-19
TSS (Mg/Lt)	< 0.2	0.212	0.242	0.2632	0.27	0.287
Millipore (Lt/30 minutes)	>6	10.159	9.133	Particle	7.5	7.8
F i (all all all all all all all all all a				analyser (PA)		
				not working		
Turbidity (NTU)	<0.2	0.213	0.176	Turbidity	0.25	0.231
				meter not		
	-2000		DA nationalis	working	9.45	1104
Particle count No./ml	<2000	401.65	PA not workin	g 2050 0	845	2050
Dissolved Oxygen (ppb)	<20	491.05	2251.085	2059.8	3303	2838 N:1
Iron Count (No/ml)	>1.0	0.981	0.767	0.342	0.21	0.080
Sulphide (Mg/lt)	Nil	0.092 Nil	0.000 Nil	0.07275 Nil	0.080 Nj1	0.039 Nil
	1411	ICV	V Platform	INI	III	INI
Parameter	Limit	2014-15	2015-16	2016-17	2017-18	2018-19
TSS (Mg/Lt)	< 0.2	0.180	0.166	0.177	0.211	0.17
Millipore(Lt/30 minutes	>6	9.183	10.80	9.55	7.3	7.1
Turbidity (NTU)	< 0.2	0.183	0.157	0.1825	0.21	0.177
Particle count No./ml	<2000			PA not workin	g	
Dissolved Oxygen (ppb)	<20	93.96	206.33	497	415	Nil
Residual Sulphite (Mg/lt)	>1.0	0.474	0.660	0.60	0.51	0.44
Iron Count (No/ml)	< 0.05	0.048	0.052	0.049	0.062	0.053
Sulphide (Mg/lt)	Nil	Nil	Nil	Nil	Nil	Nil
		SHV	V Platform			
Parameter	Limit	2014-15	2015-16	2016-17	2017-18	2018-19
TSS (Mg/Lt)	< 0.2	0.165	0.175	0.22	Sampling poir	nt not available
Millipore(Lt/30 minutes	>6	11.11	9.244	7.78	Sampling poin	nt not available
Turbidity (NTU)	< 0.2	0.205	0.217	0.235	0.31	0.33
Particle count No./ml	<2000	771.85	1444.583	2200	3246	3875
Dissolved Oxygen (ppb)	<20	1253.43	1367.583	2029.8	2050	1237
Residual Sulphite (Mg/It)	>1.0	0.752	0.531	0.70	0.80	0.29
Iron Count (No/mi)	<0.05 Nil	0.081	0.115 Nil	0.212 Nil	0.235	0.22 Nil
Sulphide (Mg/It)	INII	INII		INII	INII	INII
Parameter	Limit	2014-15	2015-16	2016-17	2017-18	2018-19
		2014-15	2013-10	2010-17	2017-10	2010-17
155 (Mg/Lt)	<0.2	0.194	0.201	0.19	0.188	0.190
Turbidity (NTU)	>0	0.223	0.197	9.32	8.5 0.19	0.18
Particle count No /ml	<2000	1310.49	PA not	working	774	1234
Dissolved Oxygen (nnh)	<2000	62 31	75 167	45 33	52	Nil
Residual Sulphite (Mg/lt)	>1.0	0.886	1.057	0.75	0.57	0.69
Iron Count (No/ml)	< 0.05	0.059	0.048	0.050	0.061	0.057
Sulphide (Mg/lt)	Nil	Nil	Nil	Nil	Nil	Nil
		WI	N Platform		<u></u>	<u>.</u>
Parameter	Limit	2014-15	2015-16	2016-17	2017-18	2018-19
TSS (Mg/Lt)	< 0.2	0.87	0.415	0.33	0.32	0.244
Millipore(Lt/30 minutes	>6	8.26	8.058	7.34	8	8.2
Turbidity (NTU)	< 0.2	0.38	0.32	0.31	0.3	0.24
Particle count No./ml	<2000	2132	PA not	2313	2213	PA not
		0 · · ·	working	0.7	4.57	working
Dissolved Oxygen (ppb)	<20	244	104	85	165	Nil
Residual Sulphite (Mg/lt)	>1.0	1.04	1.063	1.05	1.05	0.717
Iron Count (No/ml)	<0.05	0.04	0.047	0.048	0.045	0.049
Sulphide (Mg/lt)	N1l	N1l	N1l	N1l	N1l	N1l

Neelam Field

Parameter	Limit	2014-15	2015-16		2017-18	
TSS (Mg/Lt)	<0.20	0.36	0.26	0.29	0.26	0.27
Millipore(Lt/ 30 minutes	5-7 MIN	4.70	6.55	6.08	5.85	5.42
Turbidity (NTU)	<0.20	0.35	0.23	0.26	0.25	0.29
Particle count No./ml	<2000	2545.83	1084.58	1285.92	2344.00	1266.01
Dissolved Oxygen (ppb)	<20	16.92	20.87	10.27	65.74	37.75
Residual Sulphite (Mg/lt)	1.0 MIN	1.00	0.87	1.00	1.02	0.81
Iron Count (No/ml)	<0.05	0.31	0.20	0.15	0.04	0.25
Sulphide (Mg/lt)	NIL	Nil	Nil	Nil	Nil	Nil
			Heera field			
Parameter	Limit	2014-15	2015-16	2016-17	2017-18	2018-19
TSS (Mg/Lt)	<0.20	0.18	0.19	0.20	0.32	0.78
Millipore(Lt/ 30 minutes	5-7 MIN	7.82	7.79	7.29	5.49	3.82
Turbidity (NTU)	<0.20	0.12	0.13	0.19	0.30	0.31
Particle count No./ml	<2000	991.00	1144.92	1859.17	1391.17	2499.84
Dissolved Oxygen (ppb)	<20	38.47	55.39	23.28	52.01	202.23
Residual Sulphite (Mg/lt)	1.0 MIN	1.17	1.15	1.26	0.81	0.92
Iron Count (No/ml)	<0.05	0.04	0.04	0.04	0.17	0.07
Sulphide (Mg/lt)	NIL	Nil	Nil	Nil	Nil	Nil

Source: Mumbai high, Neelam Heera Chemistry Monthly Reports

Annexure-X (as referred to in Para 5.5) Lower dosing of water injection chemicals against recommended norms

	Coagulant											
Year	Dosing norm-ppm	WIN	WIS	ICW	SHW	MNW	Average					
2014-15		0.19	0	0	0.2	0.2	0.12					
2015-16		0.43	0	0.26	0	0.37	0.21					
2016-17	0.4 to 0.8	0.15	0	0.01	0	0.18	0.07					
2017-18		0.18	0	0.41	0	0.29	0.18					
2018-19		0.26	0	0.37	0	0.44	0.21					

	Poly Aluminium Chloride (PAC)											
Year	Dosing norm-ppm WIN WIS ICW SHW MNW Average											
2014-15		0.4	0.64	0.41	0.21	0.42	0.42					
2015-16	0.4 to 0.8	0.62	0.53	0.35	0.23	0.47	0.44					
2016-17	0.11000.0	0.88	0.82	0.45	0.13	0.44	0.55					
2017-18		0.55	1.59	0.14	0	0.21	0.50					
2018-19		0.73	1.12	0.7	0	0.22	0.55					

	Oxygen scavenger											
Year	Dosing norm-ppm	WIN	WIS	ICW	SHW	MNW	Average					
2014-15		5.25	6.94	7.35	5.6	8.41	6.71					
2015-16		7.07	8.7	6.75	5.83	8.58	7.39					
2016-17	10	8.12	7.46	7.96	5.17	5.32	6.81					
2017-18		7.14	5.2	7.92	4.93	5.95	6.23					
2018-19		7.61	11.15	10.13	8.87	7.46	9.04					

	Water Corrosion Inhibitor											
Year	Dosing norm- ppm	WIN	WIS	ICW	SHW	MNW	Average					
2014-15		5.81	7.33	8.67	4.83	7.59	6.85					
2015-16		7.27	8.31	8.81	5.56	8.63	7.72					
2016-17	20	8.75	6.65	11.03	3.58	5.56	7.11					
2017-18		2.78	5.33	6.08	2.12	2.79	3.82					
2018-19		8.02	10.75	9.82	6.24	9.99	8.96					

Sl. No.	Institute study report	Observations	Recommendations
1.	IRS Manual on Offshore Injection Water Quality - March 1994	Emphasis of monitoring needs to be laid at the well heads rather than at the process platforms. But, unfortunately, reverse is the case at Mumbai High, where energy as well as manpower is utilised at the process platforms and monitoring at the wellheads is being neglected. In the process, wellheads are not being regularly monitored in a planned way, and thus operational engineer is unaware of the quality of the water injected inside the reservoir. Irregular monitoring carried out at wellheads indicate that the injection water quality is bad and not as per specifications. But, it seems that, this fact has not been taken up seriously and no remedial measures have been undertaken to improve the injection water quality so as to bring it back within operational limits.	Weekly monitoring of all water quality parameters at all wellhead
2.	IRS study report on Injection water quality and injectivity assessment of injectors in Mumbai High - March 2011	Deterioration in water quality parameters in injection lines during transportation from fine filters to wellhead. In most of the back wash samples, total suspended solids (TSS) and turbidity was quite high and filterability was quite low than the desired value. Reduction in sulphate irons and increase in iron content indicates sulphate reducing bacteria (SRB) activity. Reduction in calcium, magnesium, bicarbonate indicate tendency for scaling.	Regular monitoring of water quality after fine filter, injector header and wellhead is needed.
3.	In-house committee report on Facility cost optimisation and water injection improvement in Mumbai High - July 2012	Analysis of pigging flushing water and backflow water analysis revealed that deterioration in water quality parameters in injection lines during transportation from fine filters to well head. In most of the back wash samples, high total suspended solids and turbidity and low filterability observed. SRB and scaling activity due to reduction in sulphate irons and increase in iron content, reduction in calcium, magnesium, bicarbonate.	Regular monitoring of water quality after fine filters, injection header and wellhead.
4.	IOGPT report on Premature failure of water injection lines - August 2014	In Mumbai High North, impairment in injectivity due to tubing leakage/ casing damage mainly due to corrosion which has taken place over the years because of poor injection water quality and Mumbai High South poor injectivity in the wells on account of impairment/ chocking of formation due to foreign material reaching into the formation along with injected water. Non availability of desired chemical affect the maintaining water quality	Regular monitoring of water injection quality at unmanned platforms including presence of oxygen, particle counts, Millipore test, residual sulphite, corrosion rate and SRB count on monthly basis.

Annexure-XI (as referred to in Para 5.6) Recommendations on measurement of water quality at wellhead

Annexure XII

Deterioration in water quality on the way to wellhead (as referred in Para 5.6)

SI.	Water qu complex	uality mea	sured at	process	Water o platform	uality mea	sured at	Unmanned	Deteriorati quality from platform to (in number	on in water m WI o wellhead o of times)
N0.	Process platform	Date of sampling	Iron content (mg/lt)	Turbid ity (NTU)	Well Head	Date of sampling	Iron content (mg/lt)	Turbidity (NTU)	Iron content (mg/lt)	Turbidity (NTU)
1	BHS	10.11.18	0.088	*	SB-1	10.11.18	2.8	*	31.8	*
2	BHS	10.11.18	0.088	*	SB-2	10.11.18	1.6	*	18.2	*
3	MHN	04.06.16	0.04	0.19	N11	04.06.16	2.1	1.76	52.5	9.26
4	MHN	09.07.16	0.059	0.19	N11	09.07.16	0.9	2.4	15.3	12.63
5	MHN	02.05.16	0.04	0.17	N15	02.05.16	1	1.2	25.0	7.06
6	MHN	29.05.16	0.04	0.18	N15	29.05.16	3	1.06	75.0	5.89
7	MHN	14.06.16	0.04	0.21	N15	14.06.16	1.5	1.08	37.5	5.14
8	MHN	05.07.16	0.054	0.19	N16	05.07.16	1.2	0.63	22.2	3.32
9	MHN	21.05.16	0.04	0.17	NB	21.05.16	0.6	1.1	15.0	6.47
10	MHN	10.06.16	0.04	0.19	NB	10.06.16	1.2	0.6	30.0	3.16
11	MHN	11.07.16	0.058	0.2	NB	11.07.16	1.2	0.94	20.7	4.70
12	MHN	05.05.16	0.04	0.17	NS	05.05.16	0.9	1.3	22.5	7.65
13	MHN	09.07.16	0.059	0.19	NS	09.07.16	0.6	1.22	10.2	6.42
14	MHN	19.05.16	0.04	0.16	NW	19.05.16	0.9	3.87	22.5	24.19
15	MHN	10.09.18	0.069	0.19	NS	10.09.18	>1.0	8.3	*	43.68
16	MHN	10.09.18	0.069	0.19	WA	10.09.18	>1.0	13	*	68.42
17	MHN	25.11.18	0.047	0.2	N5	25.11.18	<1.0	4.7	*	23.50
18	MHN	05.05.16	0.04	0.17	WA	05.05.16	2.4	4.1	60.0	24.12
19	MHN	10.09.18	0.069	0.19	WA	10.09.18	>1.0	13	*	68.42
20	MHN	05.05.16	0.04	0.17	WA	05.05.16	2.4	4.1	60.0	24.12
21	MHN	20.05.16	0.04	0.18	WI4	20.05.16	0.3	0.14	7.5	0.78
22	MHN	11.07.16	0.058	0.2	WI4	11.07.16	0.6	0.99	10.03	4.95
23	MHN	01.06.16	0.04	0.16	WI6	01.06.16	0.6	2.55	15.0	15.94
24	MHN	09.09.18	0.069	0.19	N11	09.09.18	>1.0	2.83	*	14.89
25	MHN	29.05.16	0.04	0.18	N15	29.05.16	3	1.06	75.0	5.89
26	MHN	01.08.16	0.06	0.23	N15	01.08.16	1.2	1.1	20.0	4.78
27	MHN	21.08.16	0.047	0.18	N15	21.08.16	0.9	0.94	19.1	5.22
28	MHN	07.09.18	0.07	0.18	N15	07.09.18	>1.0	11.7	*	65.00
29	MHN	10.09.18	0.069	0.19	N19	10.09.18	>1.0	2.4	*	12.63
30	MHN	29.11.18	0.46	0.18	N19	29.11.18	<1.0	7.44	*	41.33
31	MHN	28.11.18	0.047	0.19	RS5	28.11.18	<1.0	5.45	*	28.68
32	MHN	28.11.18	0.047	0.19	RS5	28.11.18	<1.0	5.45	*	28.68
33	MHN	28.11.18	0.047	0.19	NV	28.11.18	<1.0	2.87	*	15.11
34	MHN	04.12.18	0.048	0.18	NV	04.12.18	<1.0	2.87	*	15.94
35	MHN	22.01.19	0.047	0.18	ZC	22.01.19	<1.0	28	*	155.56
36	MHN	22.02.19	0.049	0.18	ZC	22.02.19	<1.0	28	*	155.56
37	WIN	13.12.17	0.048	0.37	W13-3	13.12.17	1.8	2.88	37.5	7.78
38	WIN	13.12.17	0.048	0.37	W13-3	13.12.17	1.7	2.75	35.4	7.43
39	WIN	13.12.17	0.048	0.37	W13-3	13.12.17	1.7	2.29	35.4	6.19
40	WIN	28.03.18	0.043	0.22	W12	28.03.18	1.4	*	32.6	*
			-					Average	30.24	25.42

Source: Monthly Performance Reports of Chemistry section * Data not available

Annexure XIII (as referred to in Para 7.1)

Gist of observations and recommendations of consultants/ internal committees of the company on reservoir health

(i) **Bombay High Review Committee** headed by Shri A.B. Das Gupta was appointed (April 1990) by the Ministry of Petroleum & Natural Gas to find answers related to various issues including pressure maintenance facilities. The Report stated (November 1990) that greater voidage was caused by the excess gas production from wells with high Gas Oil Ratio and delayed implementation of water injection. If gas was coming from LIII reservoir (major producing reservoir) it could be ending up with lower recoveries than would be feasible through a more stringent control of GOR. The reservoir could not be expected to give the predicted ultimate recoveries unless GOR was kept within the cut-off point.

(ii) **M/s. Ganesh Thakur**, an international consultant was engaged (2007) by the company to address the low-pressure areas and to improve voidage compensation/ reservoir health and sweep efficiency. The project report recommended for accelerated water injection, injection build up for achieving 100 *per cent* voidage replacement, and stimulation of low Injectivity wells in Mumbai High field. In Heera, it was observed that with increased water injection, once the pressure increases to about 1500 psi from the then levels of 1200 psi, the oil rate was estimated to increase.

(iii) **M/s William Cobbs and Associates,** an international consultant appointed (August 2009) by the Company to conduct a workshop on water injection stated that the cumulative voidage replacement ratio, since start of injection was less than one and as a result, reservoir pressure continued to decline in the field resulting in decline in well productivity. For effective voidage replacement, the consultant suggested to keep VRR values greater than 100 *per cent* (usually 110 to 130 *per cent*).

(iv) **In-house taskforce** constituted by Mumbai High for Augmentation and Redistribution of water injection in Mumbai High field stated (October 2018) that uneven distribution of water injection has led to the differential depletion in the reservoir laterally and within layers, resulting localised pressure sinks and/ or high-water production in different parts of the reservoir. Taskforce emphasised for effectiveness of water injection for pressure maintenance and improving sweep by targeting Incremental voidage compensation levels of 100 to 120 *per cent* and re-distributing injection water.

(v) **M/s. Gaffney, Cline & Associates (GCA)** was appointed by the company to perform an independent review of ONGC production profile for Mumbai High field. In its report (December 2019), GCA concluded that disruption and/ or delay in water injection contributed to higher decline in production, through reduced well productivity and declining reservoir pressure. It recommended improving sweep efficiency and restoring reservoir energy, focusing on injection plan and increasing voidage replacement ratio and

maintaining voidage replacement above 100 *per cent*. GCA opined that Management production profile could be achieved only if water injection is maintained at high level of efficiency and recommended to maintain integrity of injection network.

(vi) **M/s. GCA** was also appointed to perform independent review of production profile of Heera field. In its report, M/s.GCA stated (December 2019) that the profile is valid only if water injection is maintained as per the HRP III redevelopment scheme. Historically, water injection was not stable due to several reasons including injection shutdowns and that pressure sinks had developed in some parts of Heera. Reduction in water injection by 21 *per cent* during 2012-19, had resulted in liquid rates dropping by 21 *per cent*. GCA recommended ONGC to conduct an extensive pressure surveillance programme as the available pressure data was sparse and incoherent.

Annexure-XIV A (as referred to in Para 7.3)

Statement indicating value of deficit due to insufficient water injection in Mumbai High field

	0	NGC working						Audit wo	rking			
Mumbai High Field Year	FR recomme nded simulatio n model with 6% losses (MMT)	FR recommen ded with actual WI- simulation model with 6% losses (MMT)**	Oil short- fall (MMT)	Oil shortfall without 6% losses (MMT)	Act ual losse s (%)	Oil short- fall (MMT)	PPAC crude oil rate per bbl (US\$)	Excha nge Rate US\$ =₹	Value of oil deficit (₹ in crore)	ONGC Realised crude oil rate per bbl net of subsidie s & levies	ONGC realisati on value less of subsidy and statutor y levies (₹ in crore)	Loss of revenue to Govt. (₹ in crore)
	(a)	(b)	(c)= (a)-(b)	(d)= (c)*100/94	(e)	(f)= (d)- (d*e/100)	(g)	(h)	(i)=(f)*(g)*(h)*7.6 *10 ⁶ /10 ⁷	(j)	(k)	(l)= (i)- (k)
2014-15	9.018	8.873	0.145	0.154	0.64	0.153	84.156	61.15	599.44	36.35	258.92	340.52
2015-16	8.995	8.625	0.371	0.395	0.64	0.392	46.166	65.46	900.71	32.71	636.42	264.29
2016-17	8.84	8.323	0.517	0.550	1.55	0.541	47.558	67.09	1,312.98	35.88	990.69	322.29
2017-18	8.567	7.971	0.596	0.634	2.35	0.619	56.427	64.18	1,704.10	40.44	1226.44	477.66
2018-19	8.056	7.39	0.666	0.709	1.96	0.695	69.880	69.90	2,578.78	50.77	1873.35	705.43
Total	43.476	41.182	2.295	2.441		2.401			7,096.01		4985.82	2110.19

**The production as per simulation model has been reworked by the Management after changing only the water injection quantity as per actual.

Annexure-XIV B (as referred to in para 7.3) Statement indicating value of deficit due to insufficient water injection in Neelam & Heera fields

	C	NGC workin	ıg					Audit wor	king			
Heera Field Year	FR recomme nded simula- tion model with 6% losses MMT	FR recommen ded with actual WI- simulation model with 6% losses MMT**	Oil Shortfall MMT	Oil Shortfall without 6% losses MMT	Actual losses (%)	Oil Short- fall MMT	PPAC crude oil rate per bbl US\$	Exchange Rate US\$ =₹	Value of oil deficit (₹ in crore)	ONGC Realised crude oil rate per bbl net of subsidies & levies	ONGC realis- ation value less of subsidy and statutory levies (₹ in crore)	Loss of revenue to Govt. (₹ in crore)
	(a)	(b)	(c)=(a)- (b)	(d)= (c)*100/9 4	(e)	(f) = (d) - (d*e/10) = (d)	(g)	(h)	(i)=(f)*(g) *(h)*7.6* 10 ⁶ /10 ⁷	(j)	(k)	(l)= (i)- (k)
2014-15	2.174	1.979	0.195	0.207	6.44	0.194	84.156	61.1471	759.05	36.35	327.88	431.17
2015-16	2.223	1.982	0.241	0.256	0.00	0.256	46.166	65.4611	588.85	32.71	417.20	171.65
2016-17	2.199	1.949	0.25	0.266	3.55	0.257	47.558	67.0896	622.02	35.88	469.33	152.70
2017-18	2.117	1.844	0.273	0.290	10.16	0.261	56.427	64.1781	718.11	40.44	516.84	201.27
2018-19	1.979	1.638	0.341	0.363	11.22	0.322	69.88	69.901	1195.62	50.77	868.58	327.03
Total	10.692	9.392	1.3	1.383		1.290			3883.66		2599.84	1283.82

	ONGC working			Audit working								
Neelam Field Year	FR recomme nded simula- tion model with 6% MMT	FR recommen ded with actual WI- simulation model with 6% losses MMT**	Oil Short- fall MMT	Oil Shortfall without 6% losses MMT	Actual losses (%)	Oil Short- fall MMT	PPAC crude oil rate per bbl US\$	Exchange Rate US\$ = ₹	Value of oil deficit (₹ in crore)	ONGC Realised crude oil rate per bbl net of subsidies & levies	ONGC realisa- tion value less of subsidy and statutory levies (₹ in crore)	Loss of revenue to Govt. (₹ in crore)
	(a)	(b)	(c)= (a)-(b)	(d)= (c)*100/94	(e)	(f)= (d)- (d* $e/1$ 00)	(g)	(h)	(i)=(f)*(g)*(h)*7.6 *10 ⁶ /10 ⁷	(j)	(k)	(l)= (i)- (k)
2015-16	0.763	0.755	0.008	0.009	3.06	0.008	46.166	65.4611	18.95	32.71	13.43	5.52
2016-17	0.701	0.675	0.026	0.028	3.52	0.027	47.558	67.0896	64.71	35.88	48.83	15.89
2017-18	0.639	0.61	0.029	0.031	16	0.026	56.427	64.1781	71.32	40.44	51.33	19.99
2018-19	0.710	0.674	0.036	0.038	0.03	0.038	69.88	69.901	142.13	50.77	103.26	38.88
Total	2.813	2.714	0.099	0.105		0.099			297.12		216.84	80.28
NH Total						1.389			4180.77		2816.68	1364.10

** The production as per simulation model has been reworked by the Management after changing only the water injection quantity as per the actual.